The Role of Mitochondrial Functional Proteins in ROS Production in Ischemic Heart Diseases
نویسندگان
چکیده
Ischemic heart diseases (IHD) have become the leading cause of death around the world, killing more than 7 million people annually. In IHD, the blockage of coronary vessels will cause irreversible cell injury and even death. As the "powerhouse" and "apoptosis center" in cardiomyocytes, mitochondria play critical roles in IHD. Ischemia insult can reduce myocardial ATP content, resulting in energy stress and overproduction of reactive oxygen species (ROS). Thus, mitochondrial abnormality has been identified as a hallmark of multiple cardiovascular disorders. To date, many studies have suggested that these mitochondrial proteins, such as electron transport chain (ETC) complexes, uncoupling proteins (UCPs), mitochondrial dynamic proteins, translocases of outer membrane (Tom) complex, and mitochondrial permeability transition pore (MPTP), can directly or indirectly influence mitochondria-originated ROS production, consequently determining the degree of mitochondrial dysfunction and myocardial impairment. Here, the focus of this review is to summarize the present understanding of the relationship between some mitochondrial functional proteins and ROS production in IHD.
منابع مشابه
Evaluation of Cardiac Mitochondrial Function by a Nuclear Imaging Technique using Technetium-99m-MIBI Uptake Kinetics
Mitochondria play an important role in energy production for the cell. The proper function of a myocardial cell largely depends on the functional capacity of the mitochondria. Therefore it is necessary to establish a novel and reliable method for a non-invasive assessment of mitochondrial function and metabolism in humans. Although originally designed for evaluating myocardial perfusion, 99mTc...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملIncrease of uncoupling protein-2 expression in the ischemic rat heart
Introduction: Reactive oxygen species (ROS) have been suggested to play an important role in the myocardial damage induced by ischemia – reperfusion. One element believed to be activated by ROS and to contribute to the reduction of ROS production, is the uncoupling protein-2 (UCP2). The objective of this investigation was to explore the effect of myocardial ischemia reperfusion on cardiac UC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016